Abstract
Capacitance probe measurements of the visible bubble flow rate have been made in a pressurized fluidized bed burning coal. The bed, of 0.3 × 0.3 m cross-section, was operated at pressures between 1.0 and 2.0 MPa and at temperatures between 750 and 900°C. The fluidizing velocity was 0.95 m/s and the mean particle diameter was 0.9 mm. Based on the experimental results, a model of the gas distribution between the bubble phase and the particulate phase in fluidized beds with a slugging behaviour was developed. The model accounts for the lack of bubble flow obtained if the two-phase theory is employed. In order to verify the model, simultaneous measurements of the visible bubble flow rate and of the gas flow rate through the bubbles were carried out in a bed of similar geometry but operating at ambient conditions. In this bed the fludizing velocity was varied between 1.6 and 2.7 m/s and the mean particle diameter was 1.0 mm. The through-flow of gas was measured with the aid of pressure probes. Evaluation of the experimental results using the model showed that this gas through-flow in the bubble phase subsequently increases the superficial gas velocity in the particulate phase between the vertically aligned bubbles (slugs), and that this gas velocity in excess of the incipient fluidization velocity is responsible for the large deviation from the two-phase theory. The associated increase of the particulate phase voidage was calculated via the Ergun equation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have