Abstract
Underwater biogenic habitats composed of unattached calcified red algae, named as rhodolith or maërl beds, may extant either alive or dead, over the seabed. The accumulation of rhodoliths constitute three-dimensional structured biogenic habitats that harbour high diversity of benthic organisms. In the Mediterranean Sea, rhodolith beds can be found between ca. 50 and 100 m, increasing diversity of the continental shelf habitats and their conservation value. Despite the remarkable relevance of these habitats, information regarding their spatial distribution in the western Mediterranean is scarce. In addition, these habitats are threatened by a range of anthropogenic activities and by climate-driven changes. In this study, we explored areas with rhodoliths' occurrence from the north to the south of the east coast of Spain. By feeding video recording data into a spatial distribution model, we assessed which biophysical drivers: (i) shape the spatial variation in the abundance of rhodoliths and (ii) define the assemblages of the biological traits and functional richness of the associated epibenthic fauna recorded by video. In addition, we examined the impact of fishing activities on these habitats. Our results evidenced that ‘Depth’ and ‘Temperature’ were important environmental factors explaining rhodoliths variation, and we defined their optimal distribution range in the western Mediterranean. The biological traits approach showed significant effects of the geographical location of rhodolith beds and their small-scale spatial heterogeneity on the functional richness index. Indeed, the lowest functional richness value was observed in the area closer to trawl fishing which could be related to habitat degradation due to trawling. This study contributes to the knowledge of deep-water rhodolith beds in the western Mediterranean and reinforce the importance of rhodolith beds in continental shelves as these constitute heterogeneous seabed habitats that harbour a high species and functional diversity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have