Abstract

HypothesisUnderstanding polyelectrolyte complexation remains limited due to the absence of a systematic methodology for analyzing the distribution of components between the polyelectrolyte complex (PEC) and the dilute phases. ExperimentsWe developed a methodology based on NMR to quantify all components of solid-like PECs and their supernatant phases formed by mixing different ratios of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid)-sodium salt (PAA). This approach allowed for determining relative and absolute concentrations of polyelectrolytes in both phases by 1H NMR studies. Using 23Na and 35Cl NMR spectroscopy we measured the concentration of counterions in both phases. FindingsRegardless of the mixing ratio of the polyelectrolytes the PEC is charge-stoichiometric, and any excess polyelectrolytes to achieve charge stoichiometry remains in the supernatant phase. The majority of counterions were found in the supernatant phase, confirming counterion release being a major thermodynamic driving force for PEC formation. The counterion concentrations in the PEC phase were approximately twice as high as in the supernatant phase. The complete mass balance of PEC formation could be determined and translated into a molecular picture. It appears that PAH is fully charged, while PAA is more protonated, so less charged, and some 10% extrinsic PAH-Cl- pairs are present in the complex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.