Abstract

The distribution of the normalized critical transport current (critical current normalized with respect to the original value) of Bi2223/Ag/Ag alloy composite tape under bending strain of 0%–0.833% was studied experimentally and analytically. The experimental results were analyzed by a modeling approach based on the relation of the heterogeneous damage evolution to the distribution of the critical current. The main results are summarized as follows. (1) The measured distribution of the critical current values varying with bending strain was described well by the present approach. (2) When all specimens were damaged at high bending strains (0.338%–0.833% in the present work), the distribution of the critical current of the bent-damaged specimens was expressed by the three-parameter Weibull distribution function, the reason for which was revealed. (3) The distribution of the irreversible strain was estimated, with which the influence of the increase in the fraction of damaged specimens on the variation of critical current distribution in the low bending strain range (0%–0.35%) was elucidated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.