Abstract
We demonstrate that viscoelastic mechanics of striated muscle, measured as elastic and viscous moduli, emerge directly from the myosin crossbridge attachment time, tatt, also called time-on. The distribution of tatt was modeled using a gamma distribution with shape parameter, p, and scale parameter, β. At 5 mM MgATP, β was similar between mouse α-MyHC (16.0 ± 3.7 ms) and β-MyHC (17.9 ± 2.0 ms), and p was higher (P < 0.05) for β-MyHC (5.6 ± 0.4 no units) compared to α-MyHC (3.2 ± 0.9). At 1 mM MgATP, p approached a value of 10 in both isoforms, but β rose only in the β-MyHC (34.8 ± 5.8 ms). The estimated mean tatt (i.e., pβ product) was longer in the β-MyHC compared to α-MyHC, and became prolonged in both isoforms as MgATP was reduced as expected. The application of our viscoelastic model to these isoforms and varying MgATP conditions suggest that tatt is better modeled as a gamma distribution due to its representing multiple temporal events occurring within tatt compared to a single exponential distribution which assumes only one temporal event within tatt.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have