Abstract
BackgroundKnock-down resistance (kdr) to DDT and pyrethroids in the major Afrotropical vector species, Anopheles gambiae sensu stricto, is associated with two alternative point mutations at amino acid position 1014 of the voltage-gated sodium channel gene, resulting in either a leucine-phenylalanine (L1014F), or a leucine-serine (L1014S) substitution. In An. gambiae S-form populations, the former mutation appears to be widespread in west Africa and has been recently reported from Uganda, while the latter, originally recorded in Kenya, has been recently found in Gabon, Cameroon and Equatorial Guinea. In M-form populations surveyed to date, only the L1014F mutation has been found, although less widespread and at lower frequencies than in sympatric S-form populations.MethodsAnopheles gambiae M- and S-form specimens from 19 sites from 11 west and west-central African countries were identified to molecular form and genotyped at the kdr locus either by Hot Oligonucleotide Ligation Assay (HOLA) or allele-specific PCR (AS-PCR).ResultsThe kdr genotype was determined for about 1,000 An. gambiae specimens. The L1014F allele was found at frequencies ranging from 6% to 100% in all S-form samples (N = 628), with the exception of two samples from Angola, where it was absent, and coexisted with the L1014S allele in samples from Cameroon, Gabon and north-western Angola. The L1014F allele was present in M-form samples (N = 354) from Benin, Nigeria, and Cameroon, where both M- and S-forms were sympatric.ConclusionThe results represent the most comprehensive effort to analyse the overall distribution of the L1014F and L1014S mutations in An. gambiae molecular forms, and will serve as baseline data for resistance monitoring. The overall picture shows that the emergence and spread of kdr alleles in An. gambiae is a dynamic process and that there is marked intra- and inter-form heterogeneity in resistance allele frequencies. Further studies are needed to determine: i) the importance of selection pressure exerted by both agricultural and public health use of pyrethroid insecticides, ii) the phenotypic effects, particularly when the two mutations co-occur; and iii) the epidemiological importance of kdr for both pyrethroid- and DDT-based malaria control operations, particularly if/when the two insecticides are to be used in concert.
Highlights
Knock-down resistance to DDT and pyrethroids in the major Afrotropical vector species, Anopheles gambiae sensu stricto, is associated with two alternative point mutations at amino acid position 1014 of the voltage-gated sodium channel gene, resulting in either a leucinephenylalanine (L1014F), or a leucine-serine (L1014S) substitution
Eight-hundred and two An. gambiae were kdr genotyped using the Hot Oligonucleotide Ligation Assay (HOLA) approach and 193 specimens from Gabon and São Tomé and Príncipe Islands were analysed by allele-specific PCR (AS-PCR)
The results show the absence of the L1014S allele in all samples analysed and the presence of the L1014F allele in samples from a relatively restricted geographic region in the central part of Gulf of Guinea (i.e. Benin, Nigeria and Cameroon) (Figure 1b)
Summary
Knock-down resistance (kdr) to DDT and pyrethroids in the major Afrotropical vector species, Anopheles gambiae sensu stricto, is associated with two alternative point mutations at amino acid position 1014 of the voltage-gated sodium channel gene, resulting in either a leucinephenylalanine (L1014F), or a leucine-serine (L1014S) substitution. In the major Afrotropical malaria vector, Anopheles gambiae sensu stricto (hereafter named An. gambiae), two point mutations at amino acid position 1014 of the voltage-gated sodium channel gene have been described, resulting in either a leucine-phenylalanine (L1014F) [2], or a leucine-serine (L1014S) [4] substitution Both mutations have been shown to be linked with DDT and pyrethroid resistance phenotypes in field An. gambiae populations [2,4,5,6,7,8,9]. Studies for determining the epidemiological impact and the extent of distribution of kdr mutations in An. gambiae populations are considered relevant for the design of insecticide-based control programmes and for informing the debate about the re-introduction of DDT into the vector control
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have