Abstract
The distribution of gelsolin, a calcium-dependent actin-modulating protein, and the expression of the corresponding gene, have been characterized with respect to morphogenetic processes in mouse ovary. Substantial amounts of gelsolin have been detected in the ovary and uterus of the mouse by immunoblot analysis. The similar relative ratio of mRNA of alpha-smooth muscle actin (alpha-SM actin) and gelsolin in the two organs suggests that expression of these two genes is coordinated at the transcriptional level. Immunofluorescence has demonstrated gelsolin predominantly in three types of cells in the ovary: (1) cells of the theca externa and stroma, (2) endothelial cells lining blood vessels, and (3) cells of the superficial epithelium of ovary. In the smooth-muscle-like cells of the theca externa, gelsolin appears tightly associated with the microfilamentous cytoskeleton, which is also rich in alpha-SM actin. The presence of gelsolin in myoid cells suggests that this protein, possibly by modulation of the activity of the actomyosin ATPase, plays a critical role in contractile and morphogenetic processes, e.g., during growth and maturation of the follicle or during ovulation. In cells of the endothelium, intracellular gelsolin is associated with the F-actin cytoskeleton around the nucleus. The circumferential belt lining the lateral cell membranes in cells of the superficial epithelium at the ovarian surface is also rich in gelsolin. Our observations indicate that the function of gelsolin as a calcium- and phospholipid-dependent modulator of actin assemblies is pivotal for the regulation of the dynamic alterations of the actin cytoskeleton in the superficial epithelium when cells become attenuated and retract their microvilli during growth of the follicle.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have