Abstract
AbstractElucidation of the fluvial processes influenced by dams provides better understanding of river protection and basin management. However, less attention has been given to the erosion intensity distribution of riverbeds and its association with channel morphology and hydrological conditions. Based on hydrological and topographic data, the spatial and temporal distributions of erosion intensity (2002–2014) influenced by the Three Gorges Dam (TGD) were analyzed for the Jingjiang reach of the Yangtze River. The mechanisms underlying the distribution of erosion intensity in response to hydrological conditions were investigated. The results are as follows: (1) The erosion intensities of different discharges were not uniform, and moderate flow (10 000–27 000 m3/s) produced the largest erosion magnitude among all flow ranges. Owing to the hydrological changes caused by flood reduction and prolongation of moderate flow duration after the TGD began operating, up to 70% of the erosion amount was caused by moderate flows. (2) The lateral distribution of erosion intensity was extremely uneven, as the proportion of cumulative erosion of the low‐flow channel within the bankfull channel reached 88% in 2013. This caused the channel to become narrower and deeper. (3) The longitudinal distribution of erosion intensity was inhomogeneous. The erosion intensity in the wide reaches was greater than that in the narrow reaches, leading to smaller differences in channel morphology along the river. (4) Changes in hydrological conditions influenced by the TGD, significant reduction of sediment concentration along with flood abatement, and increased duration of moderate flow discharges were the main factors affecting erosion distribution in the post‐dam period. Our conclusions can be applied to the Yangtze River as a basis for riverbed change estimations, and river management strategies. Copyright © 2018 John Wiley & Sons, Ltd.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have