Abstract
This paper describes coal petrographic characteristics, sulfur abundance, distribution and isotopic signature in coals in the Wuda coalfield, Inner Mongolia, northern China. Petrographic studies suggest that depositional environment influences petrographic composition. The No. 9 and No. 10 coal seams, which are thought to have formed on a tidal delta plain, have high collodetrinite contents (up to 66.1%) indicating enhanced gelification and bacteria activity during coal accumulation, and also have the highest sulfur content (3.46% and 3.42%). Both organic and pyritic sulfur isotope values (−12.3‰ to 5.8‰ and −18.7‰ to 1.1‰, respectively) are variable and generally tend to be more negative in high-sulfur coals than those in low-sulfur coals in the Wuda coalfield. The negative sulfur isotope values indicate that a large portion of sulfur in the high-sulfur coals has a bacterial origin. Sulfur isotopic compositions and variations within the section were used to propose a model to explain the origin of sulfur in these coals. The presence of pyritized rod-like bacteria, cyanophyte's gelatinous sheaths and degraded algae organic matter suggests that bacteria, and perhaps algae, may play an important role in the formation of these high-sulfur coals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.