Abstract

Owing to its appealing distribution-free feature, conformal inference has become a popular tool for constructing prediction intervals with a desired coverage rate. In scenarios involving covariate shift, where the shift function needs to be estimated from data, many existing methods resort to data-splitting techniques. However, these approaches often lead to wider intervals and less reliable coverage rates, especially when dealing with finite sample sizes. To address these challenges, we propose methods based on a pivotal quantity derived under a parametric working model and employ a resampling-based framework to approximate its distribution. The resampling-based approach can produce prediction intervals with a desired coverage rate without splitting the data and can be easily applied to causal inference settings where a shift in the covariate distribution can occur between treatment and control arms. Additionally, the proposed approaches enjoy a double robustness property and are adaptable to different prediction tasks. Our extensive numerical experiments demonstrate that, compared to existing methods, the proposed novel approaches can produce substantially shorter conformal prediction intervals with lower variability in the interval lengths while maintaining promising coverage rates and advantages in versatile usage. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.