Abstract

In many large-scale machine learning applications, data are accumulated with time, and thus, an appropriate model should be able to update in an online paradigm. Moreover, as the whole data volume is unknown when constructing the model, it is desired to scan each data item only once with a storage independent with the data volume. It is also noteworthy that the distribution underlying may change during the data accumulation procedure. To handle such tasks, in this paper we propose DFOP, a distribution-free one-pass learning approach. This approach works well when distribution change occurs during data accumulation, without requiring prior knowledge about the change. Every data item can be discarded once it has been scanned. Besides, theoretical guarantee shows that the estimate error, under a mild assumption, decreases until convergence with high probability. The performance of DFOP for both regression and classification are validated in experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.