Abstract
Рассматривается двумерный диффузионный процесс. Распределение точки первого выхода такого процесса из произвольной области его значений как функция от начальной точки процесса определяется эллиптическим дифференциальным уравнением второго порядка и соответствует решению задачи Дирихле этого уравнения (случай непостоянных коэффициентов). Исследуется плотность распределения точки первого выхода процесса из малой круговой окрестности его начальной точки и ее связь с задачей Дирихле. В терминах этой асимптотики доказаны две теоремы. Первая теорема о достаточных и вторая теорема о необходимых условиях того, что распределение точки первого выхода как функция от начальной точки процесса удовлетворяет частному виду эллиптического дифференциального уравнения второго порядка, которое соответствует стандартному винеровскому процессу со сносом и обрывом. Определены устранимые члены второго порядка разложения по степеням радиуса малой круговой окрестности начальной точки процесса. В терминах устранимых членов эти две теоремы превращены в одну теорему о необходимом и достаточном условии соответствия этому винеровскому процессу.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.