Abstract

In order to explore the influence of polycyclic aromatic hydrocarbons (PAHs) emissions by petrochemical enterprises on the surrounding environment, atmospheric deposition samples of the PAHs were collected in the industrial and residential areas adjacent to a petrochemical enterprise from March 2017 to February 2018. Deposition fluxes and the composition of PAHs were studied. The source of PAHs was analyzed by a positive matrix factor (PMF) model. The results showed that the deposition fluxes of Σ15 PAHs ranged from 549 ng·(m2·d)-1 to 18845 ng·(m2·d)-1, with an average of 2712 ng·(m2·d)-1. The flux of Σ15 PAHs in the industrial area was 1.36 times greater than that in the residential area. The deposition fluxes of PAHs in winter and spring were higher than those in summer and autumn. The deposition flux was highest in January in the industrial area and lowest in October in the residential area. Phe, BbF, and Fla were the dominant monomers. There was noticeable difference of monomers between the industrial area and the residential area in summer and autumn. The monomers, such as BbF, BkF, and BgP, in the residential area were higher than those in industrial area, and the proportion of 5, 6 rings was higher, which indicated that traffic contributed more to the residential area; 3 ring PAHs in industrial area had a higher proportion, which pointed out that their main source was petroleum volatilization. Based on the quantitative source analysis, the PAHs in atmospheric deposition were mainly from traffic emissions, petroleum volatilization, and coal combustion. Three sources of PAHs accounted for 45.7%, 18.4%, 35.9%, and 46.3%, 21.4%, and 32.3%, respectively, in the industrial area and the residential area in winter and spring. In summer and autumn, the contribution of traffic sources to the residential area was as high as 65.2%, and the proportion of the petroleum source to the industrial area increased to 35.5%. Due to high-altitude emissions and favorable diffusion conditions, the coal combustion contribution was significantly reduced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.