Abstract

UV-visible absorption spectroscopy, fluorescence spectroscopy, and parallel factor analysis were used to analyze the composition of chromophoric dissolved organic matter (CDOM) in the waters of the Wangchuan River in summer, and the source of this CDOM was explored. The redundant analysis method and Pearson correlation were used to analyze the correlation between optical parameters and water quality parameters. The results showed that the CDOM of the Wangchuan River is composed of the tryptophan-like component C1 (245, 300/335 nm), the short-wave humus component C2 (240, 320-340/405 nm), and the long-wave humus component C3 (270, 350-370/470 nm), in which components C1 and C2 have some homology (r=0.859, P<0.001). CDOM absorption coefficient α(355) indicates that the CDOM concentration in the water body of the Wangchuan River is at a low level, and the correlation between α(355) and DOC concentration is significant (r=0.850, P<0.001), which is conducive to the establishment of a DOC inversion model. Water fluorescence index FI (2.36±0.20), HIX (3.66±2.47), BIX (1.56±0.82), and freshness index (β:α) (1.33±0.62), and the spectral slope ratio SR (0.76±0.25) indicate that the CDOM of the Wangchuan River has strong self-generated characteristics, weak humification characteristics, and more new CDOM. Redundancy analysis showed that the humic components (C2, C3) are affected by algae metabolism and microbial action, while tryptophan-like components (C1) are related to land-based input, and negatively correlated with dissolved total nitrogen. The humic components C2 and C3 are positively correlated with total phosphorus, dissolved total phosphorus, and dissolved organic carbon. This paper clarifies the characteristics and influencing factors of CDOM in the Qinling valley, and provides a theoretical basis for water body management in the Qinling valley.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.