Abstract

It is crucial to investigate the distribution and origin of black carbon (BC) in the environment for evaluating human inputs and developing pollution control strategies. This study analyzed BC in coastal river sediments from Haizhou Bay, Eastern China. The concentrations (dry weight) of the BC, char, soot, and total organic carbon (TOC) in coastal river sediments flowing into Haizhou Bay were 0.11-4.68, 0.06-4.24, 0.04-0.70, and 0.15-2.29mg/g, respectively. Char and soot accounted for 38.54-90.70% and 9.30-61.46% of BC, with an average of 68.95% and 31.05%, respectively. The results show that the spatial variation of char was markedly presented in river sediment (108.27%), followed by that of BC (89.25%), TOC (58.69%), and soot (55.85%). The BC was mainly distributed in the Shawang River and the Shiliang River, soot was distributed primarily in the Shawang River, and char was mainly distributed in the Shiliang River. This finding supports the presence of anthropogenic activity sources in coastal rivers. The grey correlation analysis results show that industrial and agricultural activities greatly influenced BC emissions, as the influence degree of four socio-economic variables on BC contamination decreased as follows: regional total production value, population density, total agricultural production value, and total industrial production value. The char/soot ratio, an index to discriminate the source of BC contamination in sediments, was found to range from 0.63 to 9.75 with an average of 2.75. The result indicates that BC in Haizhou Bay was contributed from mixed sources including transportation emissions, fossil fuel combustion, and biomass combustion. The study demonstrates that BC could be an effective indicator for the degree and spatial distribution of organic pollutants in coastal river sediments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call