Abstract
Depleted uranium (DU) has become a soil contaminant of considerable concern in many combat zones and weapons-testing sites around the world, including locations in Europe, the Middle East and the USA, arising from its dispersion via the application of DU-bearing munitions. Once DU is released into the environment its mobility and bioavailability will, like that of other contaminants, largely depend on the type of associations it forms in soil and on the nature of the soil components to which it binds. In this study we used the BCR sequential extraction scheme to determine the partitioning of DU amongst soil fractions of texturally varying soils from locations affected by weapons-testing activities. Isotopic analyses (MC-ICP-MS and alpha-spectrometry) were performed to verify the presence of DU in whole soils and soil fractions and to determine any preferential partitioning of the contaminant. Results identified soil organic matter as being consistently the most important component in terms of DU retention, accounting for 30–100% of DU observed in the soils examined. However, at greater distances from known contamination points, DU was also found to be largely associated with the exchangeable fraction, suggesting that DU can be mobilised and transported by surface and near-surface water and does remain in an exchangeable (and thus potentially bioavailable) form in soils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.