Abstract

Simultaneous identification and comparison of perfect and imperfect microsatellites within a genome is a valuable tool both to overcome the lack of a consensus definition of SSRs and to assess repeat history. Detailed analysis of the overall distribution of perfect and imperfect microsatellites in closely related bacterial taxa is expected to give new insight into the evolution of prokaryotic genomes. We have performed a genome-wide analysis of microsatellite distribution in four Escherichia coli and seven Chlamydial strains. Chlamydial strains generally have a higher density of SSRs and show greater intra-group differences of SSR distribution patterns than E. coli genomes. In most investigated genomes the distribution of the total lengths of matching perfect and imperfect trinucleotide repeats are highly similar, with the notable exception of C. muridarum. Closely related strains show more similar repeat distribution patterns than strains separated by a longer divergence time. The discrepancy between the preferred classes of perfect and imperfect repeats in C. muridarum implies accelerated evolution of SSRs in this particular strain. Our results suggest that microsatellites, although considerably less abundant than in eukaryotic genomes, may nevertheless play an important role in the evolution of prokaryotic genomes and several gene families.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.