Abstract

Relative frequencies of large and small genome rearrangements (inversions and transpositions) in the evolution of prokaryotic genomes can be evaluated using the ratio between the index S (the ratio of the number of identical pairs of neighboring genes in two genomes to the total number of genes in the sample of interest) and 1 - 6 x L/n, where L is the mean difference in intergenic distances and n is the number of genes in the sample. The S value uniformly decreases with the fixation of genome rearrangements, while the decrease rate of I - 6 x L/n is determined by the rearrangement size. Specifically, large inversions and transpositions lead to a dramatic decrease in the index value, while small rearrangements result in an insignificant decrease. The ratio between these indices was computed for twenty pairs of closely related species belonging to different groups of bacteria and archaea. The pairs examined strongly differed in the relative frequency of large and small rearrangements. However, computer simulation showed that the total variation can be reproduced with the same input parameters of the model. This means that the differences observed can be stochastic and can be interpreted without assuming different mechanisms and factors of genome rearrangements for different groups of prokaryotes. Relative frequencies of large and small rearrangements displayed no noticeable correlations with taxonomic position, total rate of rearrangement fixation, habitation conditions, and the abundance of transposons and repetitive sequences. It is suggested that, in some cases, phage activity increases the frequency of large genome rearrangements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.