Abstract

Voltage control in modern electric power distribution systems has become challenging due to the increasing penetration of distributed energy resources (DER). The current state-of-the-art voltage control is based on static/pre-determined DER volt-var curves. Static volt-var curves do not provide sufficient flexibility to address the temporal and spatial aspects of the voltage control problem in a power system with a large number of DER. This paper presents a simple, scalable, and robust distributed optimization framework (DOF) for optimizing voltage control. The proposed framework allows for data-driven distributed voltage optimization in a power distribution system. This method enhances voltage control by optimizing volt-var curve parameters of inverters in a distributed manner based on a cellular computational network (CCN) representation of the power distribution system. The cellular optimization approach enables the system-wide optimization. The cells to be optimized may be prioritized and two methods namely, graph and impact-based methods, are studied. The impact-based method requires extra initial computational efforts but thereafter provides better computational throughput than the graph-based method. The DOF is illustrated on a modified standard distribution test case with several DERs. The results from the test case demonstrate that the DOF based volt-var optimization results in consistently better performance than the state-of-the-art volt-var control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call