Abstract

This article addresses the problem of distributed resilient finite-time control of multiple heterogeneous battery energy storage systems (BESSs) in a microgrid subject to denial-of-service (DoS) attacks. Note that DoS attacks may block information transmission among BESSs by preventing the BESS from sending data, compromising the devices and jamming a communication network. A distributed secure control framework is presented, where an acknowledgment (ACK)-based attack detection strategy and a communication recovery mechanism are introduced to mitigate the impact of DoS attacks by repairing the paralyzed topology graphs caused by DoS attacks back into the initial connected graph. Under this framework, a distributed resilient finite-time secondary control scheme is proposed such that frequency regulation, active power sharing, and energy level balancing of BESSs can be achieved simultaneously in a finite time; meanwhile, operational constraints can be satisfied at any control transient time. Moreover, based on theoretical analysis, the impact of the duration time of DoS attacks on the convergence time of the control algorithm can be explicitly revealed. Finally, validity and effectiveness of the proposed control scheme are demonstrated by case studies on a modified IEEE 57-bus testing system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call