Abstract

Recent advances in sensing, actuation, and computation have opened the door to multi-robot systems consisting of hundreds/thousands of robots, with promising applications to automated manufacturing, disaster relief, harvesting, last-mile delivery, port/airport operations, or search and rescue. The community has leveraged model-free multi-agent reinforcement learning (MARL) to devise efficient, scalable controllers for multi-robot systems (MRS). This review aims to provide an analysis of the state-of-the-art in distributed MARL for multi-robot cooperation. Decentralized MRS face fundamental challenges, such as non-stationarity and partial observability. Building upon the “centralized training, decentralized execution” paradigm, recent MARL approaches include independent learning, centralized critic, value decomposition, and communication learning approaches. Cooperative behaviors are demonstrated through AI benchmarks and fundamental real-world robotic capabilities such as multi-robot motion/path planning. This survey reports the challenges surrounding decentralized model-free MARL for multi-robot cooperation and existing classes of approaches. We present benchmarks and robotic applications along with a discussion on current open avenues for research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.