Abstract

Distributed state estimation and localisation methods have become increasingly popular with the rise of ubiquitous computing, and have led naturally to an increased concern regarding data and estimation privacy. Traditional distributed sensor navigation methods typically involve the leakage of sensor or navigator information by communicating measurements or estimates and thus do not preserve participants' privacy. The existing approaches that do provide such guarantees fail to address sensor and navigator privacy in the common application of model-based range-only localisation, consequently forfeiting broad applicability. In this work, we define a notion of privacy-preserving linear combination aggregation and use it to derive a modified Extended Kalman Filter using range measurements such that navigator location, sensors' locations, and sensors' measurements are kept private during navigation. Additionally, a formal cryptographic backing is presented to guarantee our method's privacy as well as an implementation to evaluate its performance. The novel, provably secure, range-based localisation method has applications in a variety of environments where sensors may not be trusted or estimates are considered sensitive, such as autonomous vehicle localisation or air traffic navigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call