Abstract

We develop the resource theory of private randomness extraction in the distributed and device-dependent scenario. We begin by introducing the notion of independent random bits, which are bipartite states containing ideal private randomness for each party, and motivate the natural set of free operations. As a conceptual tool, we introduce virtual quantum state merging, which is essentially the flip side of quantum state merging, without communication. We focus on the bipartite case and find the rate regions achievable in different settings. Surprisingly, it turns out that local noise can boost randomness extraction. As a consequence of our analysis, we resolve a long-standing problem by giving an operational interpretation for the reverse coherent information (up to a constant term logd) as the number of private random bits obtained by sending quantum states from one honest party (server) to another one (client) via the eavesdropped quantum channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.