Abstract
In situ acquisition of spatial distribution of biochemical substances is important in cell analysis, cancer detection and other fields. Optical fiber biosensors can achieve label-free, fast and accurate measurements. However, current optical fiber biosensors only acquire single-point of biochemical substance content. In this paper, we present a distributed optical fiber biosensor based on tapered fiber in optical frequency domain reflectometry (OFDR) for the first time. To enhance evanescent field at a relative long sensing range, we fabricate a tapered fiber with a taper waist diameter of 6 μm and a total stretching length of 140 mm. Then the human IgG layer is coated on the entire tapered region by polydopamine (PDA) -assisted immobilization as the sensing element to achieve to sense anti-human IgG. We measure shifts of the local Rayleigh backscattering spectra (RBS) caused by the refractive index (RI) change of an external medium surrounding a tapered fiber after immunoaffinity interactions by using OFDR. The measurable concentration of anti-human IgG and RBS shift has an excellent linearity in a range from 0 ng/ml to 14 ng/ml with an effective sensing range of 50 mm. The concentration measurement limit of the proposed distributed biosensor is 2 ng/ml for anti-human IgG. Distributed biosensing based on OFDR can locate a concentration change of anti-human IgG with an ultra-high sensing spatial resolution of 680 μm. The proposed sensor has a potential to realize a micron-level localization of biochemical substances such as cancer cells, which will open a door to transform single-point biosensor to distributed biosensor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.