Abstract

In this work, we propose a distributed moving horizon state estimation (DMHE) design for a class of nonlinear systems with bounded output measurement noise and process disturbances. Specifically, we consider a class of nonlinear systems that are composed of several subsystems and the subsystems interact with each other via their subsystem states. First, a distributed estimation algorithm is designed which specifies the information exchange protocol between the subsystems and the implementation strategy of the DMHE. Subsequently, a local moving horizon estimation (MHE) scheme is designed for each subsystem. In the design of each subsystem MHE, an auxiliary nonlinear deterministic observer that can asymptotically track the corresponding nominal subsystem state when the subsystem interactions are absent is taken advantage of. For each subsystem, the nonlinear deterministic observer together with an error correction term is used to calculate a confidence region for the subsystem state every sampling time. Within the confidence region, the subsystem MHE is allowed to optimize its estimate. The proposed DMHE scheme is proved to give bounded estimation errors. It is also possible to tune the convergence rate of the state estimate given by the DMHE to the actual system state. The performance of the proposed DMHE is illustrated via the application to a reactor-separator process example.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call