Abstract

Central heating system faults affect building energy consumption and indoor thermal comfort significantly. To aim at the balance between thermal comfortable and energy-saving of the heating system for high-rise residential buildings, this paper proposes a method for the central heating system of high-rise residential buildings based on distributed model predictive control. The method analyzes the coupling factors between adjacent rooms’ temperature. Based on the state space method, a multivariable indoor temperature model is established and verified. The distributed model predictive control method is used to control and optimize the indoor temperature, and the load distribution of the circulating water pump in the heat exchange station is optimized according to the predicted heat demand. The results demonstrate that the indoor temperature after distributed model predictive control can stable near the set value. Compared with the centralized control methods, the proposed methodology can reduce energy consumption by 14.28%. Meanwhile, the efficiency of water pumps is increased by 16.74% after using the distributed control strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.