Abstract
A tunable RF microelectromechanical system (MEMS) impedance-matching network operating at a frequency band from 13 to 24 GHz based on the distributed microelectromechanical transmission line (DMTL) concept is presented in this paper. The network is implemented using a standard 0.35- ?m CMOS technology and employs a novel suspended slow-wave (SSW) structure on a silicon substrate. The SSW structure results in a reduced total footprint and enhanced impedance coverage. The 8-bit DMTL matching network, fabricated using switched MEMS capacitors and SSW coplanar waveguide on a silicon substrate, results in a wide coverage of the Smith chart up to a maximum voltage standing-wave ratio of 11.5:1 with an impedance matching better than 10 dB and a power transfer ratio of better than -2.84 dB at 24 GHz. To our knowledge, this is the first implementation of a DMTL tunable MEMS impedance-matching network using a standard CMOS technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Microwave Theory and Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.