Abstract

In this paper the bit error rate performance and error vector magnitude of a tunable impedance matching network is analyzed assuming QPSK, 16-QAM and 64-QAM digital modulation schemes. The characterized tunable impedance matching network is based on barium–strontium–titanate ferroelectric thick-film varactors. Inherent dispersive behavior is subsumed into the forward transmission of the passive device. Due to this nonlinear phase response, in general to maximize the overall system performance, an agile tuning of the varactor values is demonstrated, taking into account the phase and group delay of s21 parameter. Detailed signal simulation results based on measured data of a testbed are presented. The influence of varying matched impedances on the tuning behavior with different modulation bandwidths is discussed at a center frequency of 1.9GHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.