Abstract

Bagging forms a committee of classifiers by bootstrap aggregation of training sets from a pool of training data. A simple alternative to bagging is to partition the data into disjoint subsets. Experiments with decision tree and neural network classifiers on various datasets show that, given the same size partitions and bags, disjoint partitions result in performance equivalent to, or better than, bootstrap aggregates (bags). Many applications (e.g., protein structure prediction) involve use of datasets that are too large to handle in the memory of the typical computer. Hence, bagging with samples the size of the data is impractical. Our results indicate that, in such applications, the simple approach of creating a committee of n classifiers from disjoint partitions each of size 1/n (which will be memory resident during learning) in a distributed way results in a classifier which has a bagging-like performance gain. The use of distributed disjoint partitions in learning is significantly less complex and faster than bagging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.