Abstract

This paper investigates the potential of wind turbine generators (WTGs) and load aggregators (LAs) to provide supplementary damping control services for low frequency inter-area oscillations (LFOs) through the additional distributed damping control units (DCUs) proposed in their controllers. In order to provide a scalable methodology for the increasing number of WTGs and LAs, a novel distributed control framework is proposed to coordinate damping controllers. Firstly, a distributed algorithm is designed to reconstruct the system Jacobian matrix for each damping bus (buses with damping controllers). Thus, the critical LFO can be identified locally at each damping bus by applying eigen-analysis to the obtained system Jacobian matrix. Then, if the damping ratio of the critical LFO is less than a preset threshold, the control parameters of DCUs will be tuned in a distributed and coordinated manner to improve the damping ratio and minimize the total control cost at the same time. The proposed control framework is tested in a modified 10-machine New England system and a modified 14-generator Australian power system. The simulation results with and without the proposed control framework are compared to demonstrate the effectiveness of the proposed framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.