Abstract

The recursive training algorithm for the optimal interpolative (OI) classification network is extended to include distributed fault tolerance. The conventional OI Net learning algorithm leads to network weights that are nonoptimally distributed (in the sense of fault tolerance). Fault tolerance is becoming an increasingly important factor in hardware implementations of neural networks. But fault tolerance is often taken for granted in neural networks rather than being explicitly accounted for in the architecture or learning algorithm. In addition, when fault tolerance is considered, it is often accounted for using an unrealistic fault model (e.g., neurons that are stuck on or off rather than small weight perturbations). Realistic fault tolerance can be achieved through a smooth distribution of weights, resulting in low weight salience and distributed computation. Results of trained OI Nets on the Iris classification problem show that fault tolerance can be increased with the algorithm presented in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.