Abstract
AbstractThis paper presents a distributed consensus algorithm that employs event‐triggered communication for multiple underactuated systems under Markovian switching topologies. Instead of the general stochastic topology, the graph of the entire system is governed by a set of Markov chains to the edges, which can recover the general Markovian switching topologies in line with the practical communication network. By utilizing integral sliding mode control strategy, rigorous analysis of the asymptotic convergence results has been performed through graph theory and Lyapunov stability theory. An event‐triggered communication law is provided for each agent and Zeno behavior of triggering time sequences is excluded. It will yield to the very first application of the multiple underactuated systems, in which the system states could be enforced to track the leader. Finally, the illustrative simulations on six underactuated two‐link manipulators are given to demonstrate the effectiveness of theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.