Abstract

This paper is concerned with how multi-agent networks achieve finite-time consensus using distributed event-driven control. Due to the hybrid nonlinearities arising from the nonsmooth control and the triggering condition, finite-time consensus analyses are more challenging with event-driven control than with continuous-time control. We study agents with single integrator dynamics and scalar states and present a distributed event-driven control protocol for the finite-time consensus, with comparison to continuous-time control. It is shown that using the proposed event-driven control scheme, agents can reach consensus within a limited time and without Zeno behavior. We also obtain an estimate for the settling time and demonstrate that it is not only related to the initial condition and network connectivity, but is also linked with the event-triggering condition. Simulations are given to demonstrate the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.