Abstract

The distributed dissipative state estimation issue of Markov jump genetic regulatory networks subject to round-robin scheduling is investigated in this paper. The system parameters randomly change in the light of a Markov chain. Each node in sensor networks communicates with its neighboring nodes in view of the prescribed network topology graph. The round-robin scheduling is employed to arrange the transmission order to lessen the likelihood of the occurrence of data collisions. The main goal of the work is to design a compatible distributed estimator to assure that the distributed error system is strictly (Λ 1,Λ 2,Λ 3) - γ -stochastically dissipative. By applying the Lyapunov stability theory and a modified matrix decoupling way, sufficient conditions are derived by solving some convex optimization problems. An illustrative example is given to verify the validity of the provided method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call