Abstract

In this paper, we explore the distributed detection of sparse signals in energy-limited clustered sensor networks (CSNs). For this problem, the centralized detector based on locally most powerful test (LMPT) methodology that uses the analog data transmitted by all the sensor nodes in CSNs can be easily realized according to the prior work. However, for the centralized LMPT detector, the energy consumption caused by data transmission is excessively high, which makes its implementation in CSNs with limited energy supply impractical. To address this issue, we propose a new detector by combining the advantages of censoring and LMPT strategies, in which both the cluster head (CLH) nodes and the ordinary (ORD) nodes only send data deemed to be informative enough and the fusion center (FC) fuses the received data based on LMPT methodology. The detection performance of the proposed detector, characterized by Fisher Information, is analyzed in the asymptotic regime. Also, we analytically derive the relationship between the detection performance of the proposed censoring-based LMPT (cens-LMPT) detector and the communication rates, both of which are controlled by the censoring thresholds. We present an illustrative example by considering the detection problem with 2-CSNs, i.e., CSNs in which each cluster contains two nodes, and provide corresponding theoretical analysis and simulation results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.