Abstract
In this letter, we consider the detection of sparse stochastic signals with sensor networks (SNs), where the fusion center (FC) collects 1-bit data from the local sensors and then performs global detection. For this problem, a newly developed 1-bit locally most powerful test (LMPT) detector requires 3.3Q sensors to asymptotically achieve the same detection performance as the centralized LMPT (cLMPT) detector with Q sensors. This 1-bit LMPT detector is based on 1-bit quantized observations without any additional processing at the local sensors. However, direct quantization of observations is not the most efficient processing strategy at the sensors since it incurs unnecessary information loss. In this letter, we propose an improved-1-bit LMPT (Im-1-bit LMPT) detector that fuses local 1-bit quantized likelihood ratios (LRs) instead of directly quantized local observations. In addition, we design the quantization thresholds at the local sensors to ensure asymptotically optimal detection performance of the proposed detector. It is shown theoretically and numerically that, with the designed quantization thresholds, the proposed Im-1-bit LMPT detector for the detection of sparse signals requires less number of sensor nodes to compensate for the performance loss caused by 1-bit quantization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.