Abstract

Data deduplication refers to the process of identifying tuples in a relation that refer to the same real world entity. The complexity of the problem is inherently quadratic with respect to the number of tuples, since a similarity value must be computed for every pair of tuples. To avoid comparing tuple pairs that are obviously non-duplicates, blocking techniques are used to divide the tuples into blocks and only tuples within the same block are compared. However, even with the use of blocking, data deduplication remains a costly problem for large datasets. In this paper, we show how to further speed up data deduplication by leveraging parallelism in a shared-nothing computing environment. Our main contribution is a distribution strategy, called Dis-Dedup, that minimizes the maximum workload across all worker nodes and provides strong theoretical guarantees. We demonstrate the effectiveness of our proposed strategy by performing extensive experiments on both synthetic datasets with varying block size distributions, as well as real world datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.