Abstract

This paper presents a novel distributed control strategy for large-scale deployment of flexible demand in power systems. A game theoretical setting is adopted, modeling the loads as rational players that aim to complete an assigned task at minimum cost and compete for power consumption at the cheapest hours of the day. The main novelty is the analysis of power systems with congestion: the proposed modeling framework envisages heterogeneous groups of loads that operate at different buses, connected by transmission lines of limited capacity. The locational marginal prices of electricity, different in general for each bus, are calculated through an optimal power flow problem, accounting for the impact of the flexible devices on power demand and generation. A new iterative scheme for flexible demand coordination is analytically characterized as a multivalued mapping. Its convergence to a stable market configuration (i.e., variational Wardrop equilibrium) and global optimality are analytically demonstrated, for any penetration level of flexible demand and any grid topology. Distributed implementations of the proposed control strategy are discussed, evaluating their performance with simulations on the IEEE 24-bus system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.