Abstract
Microgrids can operate in both grid-connected mode and islanded mode. In order to smooth transfer from islanded mode to grid-connected mode, it is necessary to synchronize the point of common coupling (PCC) with main utility grid (UG) in voltage frequency, phase and amplitude. Conventional synchronization methods based on centralized communication are very costly and not suitable for multi-bus microgrids that have a large number of distributed generators (DGs). To address this concern, this study presents an active synchronization control strategy based on distributed cooperation technology for multi-bus microgrids. The proposed method can reconnect the microgrid in island to UG seamlessly with sparse communication channels. Synchronization correction signals are generated by a voltage controller, which are only transmitted to the leader DGs. Meanwhile, each DG exchanges information with its neighbors. Finally, the voltage of PCC will synchronize with the main grid and all DGs will achieve the consensus behaviors. Compared with traditional synchronization methods, the proposed method does not need complex communication networks and improves flexibility and redundancy. Even if the distributed communication breaks down, the primary droop control can still operate robustly. Small signal model of entire system is developed to adjust the parameters of distributed active synchronization controller. Simulation results are presented to verify the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical Power & Energy Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.