Abstract

Research on the optimal power allocation of large-scale distributed generator (DG) units based on user power generation to access microgrids (MGs) in a multi-agent system framework has recently become the focus of modern grid and energy concerns. In this paper, according to the Cournot oligopoly game, the Nash equilibrium point between the power generation company and power generation user of the MG operating in island mode is obtained. According to the obtained Nash equilibrium point, the optimal ratio of power generated by the power generation company and by the power generation user in the model is calculated. At the same time, to achieve the maximum benefit and stable operation of the MG, a distributed cooperative control algorithm based on consensus theory is proposed. This control algorithm can cause each DG to generate power according to the total consumption load. The optimal power generation ratio distribution based on the Nash equilibrium point eliminates the steady-state frequency deviation of each DG in the MG, thereby ensuring the user’s power quality. The simulation results show that the control algorithm can achieve the above research goals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call