Abstract

This paper introduces MULBS, a new DCOP (distributed constraint optimization problem) algorithm and also presents a DCOP formulation for scheduling of distributed meetings in collaborative environments. Scheduling in CSCWD can be seen as a DCOP where variables represent time slots and values are resources of a production system (machines, raw-materials, hardware components, etc.) or management system (meetings, project tasks, human resources, money, etc). Therefore, a DCOP algorithm must find a set of variable assignments that maximize an objective function taking constraints into account. However, it is well known that such problems are NP-complete and that more research must be done to obtain feasible and reliable computational approaches. Thus, DCOP emerges as a very promising technique: the search space is decomposed into smaller spaces and agents solve local problems, collaborating in order to achieve a global solution. We show with empirical experiments that MULBS outperforms some of the state-of-the-art algorithms for DCOP, guaranteeing high quality solutions using less computational resources for the distributed meeting scheduling task.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call