Abstract

Distributed Constraint Optimization Problem (DCOP) is a promising framework for modeling a wide variety of multi-agent coordination problems. Best-First search (BFS) and Depth-First search (DFS) are two main search strategies used for search-based complete DCOP algorithms. Unfortunately, BFS often has to deal with a large number of solution reconstructions whereas DFS is unable to promptly prune sub-optimal branch. However, their weaknesses will be remedied if the two search strategies are combined based on agents’ positions in a pseudo-tree. Therefore, a hybrid DCOP algorithm with the combination of BFS and DFS, called BD-ADOPT, is proposed, in which a layering boundary is introduced to divide all agents into BFS-based agents and DFS-based agents. Furthermore, this paper gives a rule to find a suitable layering boundary with a new strategy for the agents near the boundary to realize the seamless joint between BFS and DFS strategies. Detailed experimental results show that BD-ADOPT outperforms some famous search-based complete DCOP algorithms on the benchmark problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call