Abstract
For integrated energy systems (IES) composed of a set of energy hubs (EHs), a consensus control method is usually adopted to achieve accurate sharing of electrical and thermal composite energies. To solve the communication redundancy problem of the consensus control method, a hierarchical optimization and distributed control scheme based on a dynamic event-triggered mechanism of EHs is proposed to realize stable operation of IES. An economic optimization strategy based on equal increment principle is improved to minimize the operation costs of IES in the second layer. Due to consensus control being integrated into the supply-demand power deviation calculations of EHs, the desired electrical and thermal power trajectories are accurately determined. To improve dynamic response performances in the presence of uncertain disturbances, an event-triggered communication mechanism is designed in the primary layer. The triggering threshold can be adjusted dynamically according to changes of electrical and thermal power outputs, and the redundant communication requirement in the electrical branches is reduced. Considering the coupling characteristics of IES energy networks, a consensus control method is promoted to synchronously track the desired electric and thermal power trajectories of EHs, and the goal of accurate power sharing is achieved. The frequency and pipeline pressure fluctuations are also limited within the allowable range. The economic optimization and coordinated operation of electrical and thermal composite energies in IES are guaranteed by the proposed hierarchical control structure. Additionally, only information from neighboring EHs at the event-triggered time is involved, so the computation simplicity and control performance can be obtained simultaneously. The hardware-in-loop experimental results are conducted to demonstrate the effectiveness of the proposed control strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.