Abstract
This paper investigates the distributed formation control problem for multiple nonholonomic wheeled mobile robots. A variable transformation is first proposed to convert the formation control problem into a state consensus problem. Then, when the dynamics of the mobile robots are considered, the distributed kinematic controllers and neural network torque controllers are derived for each robot such that a group of nonholonomic mobile robots asymptotically converge to a desired geometric pattern along the specified reference trajectory. The specified reference trajectory is assumed to be the trajectory of a virtual leader whose information is available to only a subset of the followers. Also the followers are assumed to have only local interaction. Moreover, the neural network torque controllers proposed in this work can tackle the dynamics of robots with unmodeled bounded disturbances and unstructured unmodeled dynamics. Some sufficient conditions are derived for accomplish the asymptotically stability of the systems based on algebraic graph theory, matrix theory, and Lyapunov control approach. Finally, simulation examples illustrate the effectiveness of the proposed controllers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have