Abstract

We consider a network of sensors deployed to sense a spatio-temporal field and infer parameters of interest about the field. We are interested in the case where each sensor's observation sequence is modeled as a state-space process that is perturbed by random noise, and the models across sensors are parametrized by the same parameter vector. The sensors collaborate to estimate this parameter from their measurements, and to this end we propose a distributed and recursive estimation algorithm, which we refer to as the incremental recursive prediction error algorithm. This algorithm has the distributed property of incremental gradient algorithms and the on-line property of recursive prediction error algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.