Abstract

Convenient recursive prediction error algorithms for identification and adaptive state estimation are proposed, and the convergence of these algorithms to achieve off-line prediction error minimization solutions is studied. To set the recursive prediction error algorithms in another perspective, specializations are derived from significant simplifications to a class of extended Kalman filters. The latter are designed for linear state space models with the unknown parameters augmenting the state vector and in such a way as to yield good convergence properties. Also, specializations to approximate maximum likelihood recursions, Kalman filters with adaptive gains, and connections to the extended least squares algorithms are noted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.