Abstract
The proposed approach differs from existing works in that it models the constraints of each follower as a nonlinear strict feedback system, rather than relying on a desired reference trajectory for accessible subsystems. To address the limitations caused by uncertain terms in systems, radial basis functions neural networks are utilized to compensate for these unknown nonlinear terms. This leads to a novel distributed adaptive consensus tracking control protocol for high-order nonlinear heterogeneous multi-agent systems, based on the backstepping technique. By introducing a non-zero parameter in the traditional radial basis functions neural network, a new universal approximation is constructed, which overcomes the limitation of the approximation’s finite domain. Additionally, the approximation precision can be adjusted online using provided laws, and the dimension explosion of virtual and real control gains can be avoided through the use of the designed control approach. Simulation results are provided to demonstrate the effectiveness of the proposed control scheme.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have