Abstract
In this article, we investigate the output consensus tracking problem for a class of high-order nonlinear systems with unknown parameters, uncertain external disturbances, and intermittent actuator faults. Under the directed topology conditions, a novel distributed adaptive controller is proposed. The common time-varying trajectory is allowed to be totally unknown by part of subsystems. Therefore, the assumption on the linearly parameterized trajectory signal in most literature is no longer needed. To achieve the relaxation, extra distributed parameter estimators are introduced in all subsystems. Besides, to handle the actuator faults occurring at possibly infinite times, a new adaptive compensation technique is adopted. It is shown that with the proposed scheme, all closed-loop signals are globally uniformly bounded and asymptotically output consensus tracking can be achieved.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have