Abstract
Phase aberration is widely considered a major source of image degradation in medical pulse-echo ultrasound. Traditionally, near-field phase aberration correction techniques are unable to account for distributed aberrations due to a spatially varying speed of sound in the medium, while most distributed aberration correction techniques require the use of point-like sources and are impractical for clinical applications where diffuse scattering is dominant. Here, we present two distributed aberration correction techniques that utilize sound speed estimates from a tomographic sound speed estimator that builds on our previous work with diffuse scattering in layered media. We first characterize the performance of our sound speed estimator and distributed aberration correction techniques in simulations where the scattering in the media is known a priori. Phantom and in vivo experiments further demonstrate the capabilities of the sound speed estimator and the aberration correction techniques. In phantom experiments, point target resolution improves from 0.58 to 0.26 and 0.27 mm, and lesion contrast improves from 17.7 to 23.5 and 25.9 dB, as a result of distributed aberration correction using the eikonal and wavefield correlation techniques, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.