Abstract
The results of experimental studies to determine the effect of power during laser powder cladding on temperature deformations of the substrate at a constant cladding rate and the mass flow rate of the powder are presented. Steel 1020 was used as the substrate material, from which samples of sizes 90x90 mm and a thickness of 8 mm were made. Laser powder cladding was performed by using a wear-resistant powder E-300 on a robotic complex with an ytterbium fiber laser and a coaxial powder feed. Single tracks were applied to the sample by laser powder cladding using various parameters of technological modes. The amount of deformation of the substrate was estimated taking into account the depth of the mixing layer. The cladding mode is selected, which provides minimal temperature deformations, with maximum process performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.